Towards an integrated approach for micro gas turbine fleet monitoring, control, and diagnostics

Authors: Ioanna Aslanidou (MDH), Valentina Zaccaria (MDH), Moksadur Rahman (MDH), Konstantinos G.Kyprianidis (MDH), Mark Oostveen (MTT), Tomas Olsson (RISE)

Conference: Global Power and Propulsion Society (GPPS), Zurich (10th-12th January 2018)

Abstract: Real-time engine condition monitoring and fault diagnostics results in reduced operating and maintenance costs and increased component and engine life. Prediction of faults can change the maintenance model of a system from a fixed maintenance interval to a condition based maintenance interval, further decreasing the total cost of ownership of a system. Technologies developed for engine health monitoring and advanced diagnostic capabilities are generally developed for larger gas turbines, and generally focus on a single system; no solutions are publicly available for engine fleets. This paper presents a concept for fleet monitoring finely tuned to the specific needs of micro gas turbines. The proposed framework includes a physics-based model and a data-driven model with machine learning capabilities for predicting system behaviour, combined with a diagnostic tool for anomaly detection and classification. The integrated system will develop advanced diagnostics and condition monitoring for gas turbines with a power output under 100 kW.

Download the paper here